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Abstract:We continue our systematic search for symmetric Hadamardmatrices based on the so called propus
construction. In a previous paper this search covered the orders 4v with odd v ≤ 41. In this paper we cover
the cases v = 43, 45, 47, 49, 51. The odd integers v < 120 for which no symmetric Hadamard matrices of
order 4v are known are the following:

47, 59, 65, 67, 73, 81, 89, 93, 101, 103, 107, 109, 113, 119.

By using the propus construction, we found several symmetric Hadamard matrices of order 4v for v =
47, 73, 113.
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1 Introduction
In this paper we continue the systematic investigation, begun in [1], of the propus construction of symmetric
Hadamard matrices.

Let us recall that a Hadamard matrix is a {1, −1}-matrix H of order m whose rows are mutually orthog-
onal, i.e. HHT = mIm, where Im is the identity matrix of order m. We say that H is skew-Hadamard matrix if
also H + HT = 2Im. The famous Hadamard conjecture asserts that Hadamard matrices exist for all orders m
which aremultiples of 4. (They also exist form = 1, 2.) Similar conjectures have been proposed for symmetric
Hadamard matrices and skew-Hadamard matrices, see e.g. [2, V.1.4]. The smallest orders 4v for which such
matrices have not been constructed are 668 for Hadamard matrices, 276 for skew-Hadamard matrices, and
188 for symmetric Hadamard matrices. Let us also mention that symmetric Hadamard matrices of orders 116,
156, 172 have been constructed only very recently, see [1, 3].

Since the size of a Hadamard matrix or a skew or symmetric Hadamard matrix can always be doubled,
while preserving its type, we are interestedmostly in the case where these matrices have order 4v with v odd.

The propus construction is based on the so called Propus array

H =


−C1 C2R C3R C4R
C3R RC4 C1 −RC2
C2R C1 −RC4 RC3
C4R −RC3 RC2 C1

 . (1)
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In this paper, except in section 4, the matrices Ci will be circulants of order v and the matrix R will be the
back-circulant identity matrix of order v,

R =


0 0 · · · 0 1
0 0 1 0
...
0 1 0 0
1 0 0 0

 .

The matrix H will be a Hadamard matrix if ∑
i
CiCTi = 4vI4v . (2)

(Superscript T denotes transposition of matrices.) If also CT1 = C1 and C2 = C3 then H will be a symmetric
Hadamard matrix.

To construct the circulants Ci satisfying the above conditions we use the cyclic propus di�erence families
(A1, A2, A3, A4) with parameters (v; k1, k2, k3, k4; λ) such that A2 = A3 and at least one of the base blocks
A1, A4 is symmetric. The parameters must satisfy the three equations

4∑
i=1

ki(ki − 1) = λ(v − 1), (3)

4∑
i=1

ki = λ + v, (4)

k2 = k3. (5)

We refer to such parameter sets as the propus parameter sets.
For the de�nitions of the terms that we use here and the facts we mention below, we refer the reader to

[1]. Without any loss of generality, we impose the following additional restrictions:

v/2 ≥ k1, k2; k1 ≥ k4. (6)

For convenience we say that the propus parameter sets satisfying these additional conditions are normalized.
For a given odd v there exist at least one normalized propus parameter set, see [1, Theorem 1]. However,

there exist even v for which this is not true, see [1, Theorem 2].
It is conjectured in [1] that for each odd v there exists at least one propus di�erence family in the cyclic

group Zv of integers modulo v. But this may fail if we specify not only v (odd) but also the parameters k1, k2 =
k3, k4. Our computations suggest that these exceptional propus parameter sets must have all ki equal to each
other. For instance, there is no cyclic propus di�erence family having the parameters (25; 10, 10, 10, 10; 15).
(This is also true for the propus di�erence families over the elementary abelian group Z5 × Z5.)

One of the authors developed a computer program to search for propus di�erence families. For the de-
scription of the algorithm used in the program we refer the reader to [1]. We used that program on PCs to
construct many such families for odd (or even) v. The �rst version of the program was used in the range
v < 43. The second, improved version, was capable of �nding solutions for v ≤ 51. Some of the timings for
these computations are given in section A.

In section 2 we give several examples of symmetric Hadamard matrices of new orders 188, 292, and 452.
In section 3 we list the normalized propus parameter sets for odd v ∈ {43, 45, . . . , 59} and for each of

them we indicate whether propus families with that parameter set exist and, if they do, which of the blocks
A or D can be chosen to be symmetric. This list together with a similar list in [1] shows that there is a rich
supply of propus type symmetric Hadamard matrices for orders 4v with odd v < 50. Sporadic examples are
also known for v = 53, 55, 57. The �rst undecided case is v = 59.

In section 4 we focus on the case where v = s2 is an odd square. We compute the number of propus
parameter sets (v; x, y, y, z; λ) with v = s2 by dropping the normalization condition x ≥ z. This number, Ns,
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is also the number of positive odd integer solutions of a simple quadratic Diophantine equation, namely (9).
When s is an odd prime then we conjecture that Ns − s − 1 ∈ {+1, −1}. We refer to the cases where v is odd
and all ki are equal as exceptional cases. They occur only when v = s2. We also conjecture that every prime
s ≡ 1 (mod 4) can be written uniquely as s = (a2 + b2)/(a − b) where a and b are positive integers and
1 < a ≤ (s − 1)/2. Moreover, the denominator a − b is either a square or 2 times a square.

Finally in section A, for each of the normalized propus parameter sets with odd v = 43, 45, . . . , 51,
but excluding the exceptional parameter set (49; 21, 21, 21, 21; 35), we list one or two examples of propus
di�erence families.

2 Symmetric Hadamard matrices of new orders
The smallest order 4v for which no symmetric Hadamardmatrix was known previously is 188 = 4 ·47. There
are four propus parameter sets

(47; 20, 22, 22, 18; 35), (47; 22, 20, 20, 19; 34), (47; 23, 19, 19, 21; 35), (47; 23, 22, 22, 17; 37)

with v = 47. In each case we constructed many such matrices, but here we record just two examples for each
parameter set. In all four cases, A is symmetric in the �rst and D symmetric in the second example. As B = C
we omit the block C. The examples are separated by semicolons.

(47; 20, 22, 22, 18; 35)
[1, 2, 6, 7, 12, 14, 15, 18, 22, 23, 24, 25, 29, 32, 33, 35, 40, 41, 45, 46],
[0, 1, 2, 3, 4, 7, 9, 10, 13, 14, 19, 26, 28, 30, 32, 34, 35, 36, 37, 39, 42, 46],
[0, 1, 2, 10, 12, 15, 20, 23, 26, 27, 28, 30, 33, 34, 39, 42, 43, 45];
[0, 1, 3, 4, 6, 7, 10, 11, 13, 15, 18, 19, 24, 29, 31, 33, 35, 37, 38, 45],
[0, 1, 2, 5, 8, 9, 10, 12, 13, 18, 19, 23, 24, 25, 27, 29, 31, 32, 38, 39, 41, 44],
[9, 10, 11, 12, 14, 16, 20, 21, 23, 24, 26, 27, 31, 33, 35, 36, 37, 38];

(47; 22, 20, 20, 19; 34)
[1, 4, 5, 7, 8, 9, 11, 12, 16, 18, 21, 26, 29, 31, 35, 36, 38, 39, 40, 42, 43, 46],
[0, 1, 2, 3, 7, 15, 16, 19, 21, 23, 26, 27, 28, 29, 30, 32, 34, 37, 38, 44],
[0, 1, 2, 3, 8, 9, 11, 12, 13, 18, 20, 21, 26, 27, 32, 34, 36, 41, 44];
[0, 1, 2, 3, 7, 9, 10, 12, 14, 16, 17, 18, 20, 23, 26, 27, 28, 35, 37, 42, 43, 45],
[0, 1, 2, 3, 9, 11, 13, 14, 19, 23, 26, 27, 29, 30, 32, 33, 34, 35, 38, 43],
[0, 4, 6, 11, 15, 16, 18, 19, 22, 23, 24, 25, 28, 29, 31, 32, 36, 41, 43];

(47; 23, 19, 19, 21; 35)
[0, 1, 4, 5, 7, 9, 10, 11, 12, 15, 19, 22, 25, 28, 32, 35, 36, 37, 38, 40, 42, 43, 46],
[0, 1, 2, 3, 5, 8, 9, 10, 12, 13, 17, 19, 22, 24, 28, 30, 34, 36, 37],
[0, 1, 2, 3, 13, 14, 17, 18, 19, 21, 25, 26, 27, 30, 32, 34, 35, 40, 41, 43, 44];
[0, 1, 2, 3, 5, 6, 7, 8, 11, 13, 15, 16, 18, 22, 23, 24, 26, 27, 29, 33, 38, 40, 45],
[0, 1, 2, 3, 5, 11, 12, 17, 22, 25, 29, 30, 31, 33, 34, 35, 37, 38, 41],
[0, 2, 4, 7, 8, 10, 11, 16, 17, 21, 23, 24, 26, 30, 31, 36, 37, 39, 40, 43, 45];
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(47; 23, 22, 22, 17; 37)
[0, 1, 4, 11, 12, 13, 15, 16, 18, 19, 21, 22, 25, 26, 28, 29, 31, 32, 34, 35, 36, 43, 46],
[0, 1, 2, 3, 4, 5, 8, 10, 13, 18, 19, 21, 23, 25, 27, 29, 30, 36, 39, 41, 42, 43],
[0, 1, 2, 5, 6, 10, 11, 12, 15, 21, 25, 26, 33, 38, 40, 41, 45];
[0, 1, 2, 3, 4, 7, 8, 10, 11, 12, 13, 16, 19, 21, 23, 25, 26, 29, 31, 33, 34, 35, 45],
[0, 1, 2, 3, 4, 8, 9, 12, 13, 14, 17, 18, 19, 20, 26, 27, 29, 31, 34, 37, 40, 44],
[0, 2, 6, 13, 15, 18, 20, 21, 22, 25, 26, 27, 29, 32, 34, 41, 45].

Let us give a concrete example. We choose the �rst parameter set above, (47; 20, 22, 22, 18; 35), and its
�rst propus di�erence family, namely:

A = [1, 2, 6, 7, 12, 14, 15, 18, 22, 23, 24, 25, 29, 32, 33, 35, 40, 41, 45, 46],
B = C = [0, 1, 2, 3, 4, 7, 9, 10, 13, 14, 19, 26, 28, 30, 32, 34, 35, 36, 37, 39, 42, 46],

D = [0, 1, 2, 10, 12, 15, 20, 23, 26, 27, 28, 30, 33, 34, 39, 42, 43, 45].

The binary {+1, −1}-sequences a, b = c, d associated with the base blocks A, B = C, D are:

a = [1, −1, −1, 1, 1, 1, −1, −1, 1, 1, 1, 1, −1, 1, −1, −1, 1, 1, −1, 1, 1, 1, −1,
−1, −1, −1, 1, 1, 1, −1, 1, 1, −1, −1, 1, −1, 1, 1, 1, 1, −1, −1, 1, 1, 1, −1, −1],

b = c = [−1, −1, −1, −1, −1, 1, 1, −1, 1, −1, −1, 1, 1, −1, −1, 1, 1, 1, 1, −1, 1, 1, 1,
1, 1, 1, −1, 1, −1, 1, −1, 1, −1, 1, −1, −1, −1, −1, 1, −1, 1, 1, −1, 1, 1, 1, −1],

d = [−1, −1, −1, 1, 1, 1, 1, 1, 1, 1, −1, 1, −1, 1, 1, −1, 1, 1, 1, 1, −1, 1, 1, −1,
1, 1, −1, −1, −1, 1, −1, 1, 1, −1, −1, 1, 1, 1, 1, −1, 1, 1, −1, −1, 1, −1, 1].

Let C1, C2 = C3, C4 be the circulant matrices whose �rst rows are the sequences a, b = c, d. Note that C1 is
symmetric. By plugging these circulants into the propus array (1) we obtain a symmetric Hadamard matrix of
order 188.

Next we give the symmetric Hadamard matrices of order 4v where v = 73, 113. No symmetric Hadamard
matrices of these orders were known previously.

We build the four base blocks A, B = C, D as a union of orbits of a subgroup H of Z*v acting on the �nite
�eld Zv. We choose H = {1, 8, 64} for v = 73 and H = {1, 16, 28, 30, 49, 106, 109} for v = 113.

For v = 73we use the parameter set (73; 36, 36, 36, 28; 63). The base blocks of the two propus di�erence
families are:

A =
⋃
i∈I
iH, I = {1, 2, 3, 4, 9, 11, 18, 21, 26, 27, 36, 43}

B = C =
⋃
j∈J
jH, J = {2, 4, 5, 6, 9, 12, 14, 17, 27, 34, 35, 36}

D = {0} ∪
⋃
k∈K

kH, K = {1, 2, 3, 6, 7, 9, 18, 42, 43};

A =
⋃
i∈I
iH, I = {1, 2, 3, 4, 6, 9, 12, 18, 25, 27, 35, 36}

B = C =
⋃
j∈J
jH, J = {2, 5, 7, 9, 13, 17, 25, 26, 33, 35, 36, 42}
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D = {0} ∪
⋃
k∈K

kH, K = {4, 6, 13, 18, 27, 34, 35, 36, 42}.

For v = 113 we use the parameter set (113; 56, 49, 49, 56; 97). The base blocks of the four propus di�er-
ence families are:

A =
⋃
i∈I
iH, I = {1, 4, 5, 6, 13, 17, 18, 20}

B = C =
⋃
j∈J
jH, J = {1, 5, 9, 11, 12, 17, 39}

D =
⋃
k∈K

kH, K = {2, 3, 5, 10, 11, 12, 18, 20};

A =
⋃
i∈I
iH, I = {1, 4, 5, 6, 13, 17, 18, 20}

B = C =
⋃
j∈J
jH, J = {1, 2, 4, 11, 12, 13, 17}

D =
⋃
k∈K

kH, K = {1, 2, 3, 5, 11, 12, 18, 20};

A =
⋃
i∈I
iH, I = {1, 4, 5, 6, 13, 17, 18, 20}

B = C =
⋃
j∈J
jH, J = {1, 2, 4, 11, 12, 13, 17}

D =
⋃
k∈K

kH, K = {3, 4, 5, 8, 9, 12, 13, 20};

A =
⋃
i∈I
iH, I = {1, 3, 4, 10, 12, 13, 18, 39}

B = C =
⋃
j∈J
jH, J = {2, 5, 9, 10, 17, 20, 39}

D =
⋃
k∈K

kH, K = {2, 3, 9, 11, 12, 17, 20, 39}.

The �rst three families share the same block A, and the second and third family di�er only in block D. In
spite of that, the four families are pairwise nonequivalent. The equivalence is de�ned as follows.

We say that two cyclic propus di�erence families (A1, A2, A3, A4) and (B1, B2, B3, B4) having the same
parameter set (v; k1, k2, k3, k4; λ) are equivalent if there is an automorphism ϕ of the cyclic group Zv such
that Bi is a translate of Ai for each i.

3 Normalized propus parameter sets
We list here all normalized propus parameter sets (v; x, y, y, z; λ) for odd v = 43, 45, . . . , 59. The cyclic pro-
pus families consisting of four base blocks A, B, C, D ⊆ Zv having sizes x, y, y, z, respectively, and such that
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B = C and A or D is symmetric give symmetric Hadamard matrices of order 4v. (If only D is symmetric we
have to switch A and D before plugging the blocks into the propus array.) If x = z ≠ y then the parameter set
(v; y, x, x, y; λ) is also normalized and is included in our list. In the former case the two base blocks of size y
have to be equal, while in the latter case the base blocks of size x have to be equal.

The four base blocks, subsets of Zv, are denoted by A, B, C, D. We require all propus di�erence families
to have B = C. If we know such a family exists with symmetric block A, we indicate this by writing the symbol
A after the parameter set, and similarly for the symbol D. If we know that there exists a propus family with
both A and D symmetric, then we write the symbol AD. Finally, the question mark means that the existence
of a cyclic propus di�erence familiy remains undecided.

The symbol T indicates that the parameter set belongs to the Turyn series of Williamson matrices. Since
in that case all four base blocks are symmetric, the symbol T implies AD. Further, the symbol X indicates
that the parameter set belongs to another in�nite series (see [3, Theorem 5]) which is based on the paper [5]
of Xia, Xia, Seberry, and Wu. In our list below the symbol X implies D. More precisely, for a di�erence family
A, B, C, D in the X-series two blocks are equal, say B = C, and one of the remaining blocks is skew, block A
in our list, and the last one is symmetric, block D.

For odd v in the range 43, 45, . . . , 51 there is only one propus parameter set, (49; 21, 21, 21, 21; 36), for
which we failed to �nd a cyclic propus di�erence family. (We believe that such family does not exist.)

Normalized propus paramater sets with v odd, 43 ≤ v ≤ 59

(43; 18, 21, 21, 16; 33) A, D (43; 19, 18, 18, 18; 30) A, D
(43; 21, 17, 17, 20; 32) A, D (43; 21, 19, 19, 16; 32) A, D
(43; 21, 21, 21, 15; 35) A, D (45; 18, 21, 21, 18; 33) A, D
(45; 19, 20, 20, 18; 32) AD, T (45; 21, 18, 18, 21; 33) A, D
(45; 21, 20, 20, 17; 33) A, D (45; 21, 22, 22, 16; 36) A, D
(45; 22, 19, 19, 18; 33) A, D, X (47; 20, 22, 22, 18; 35) A, D
(47; 22, 20, 20, 19; 34) A, D (47; 23, 19, 19, 21; 35) A, D
(47; 23, 22, 22, 17; 37) A, D (49; 21, 21, 21, 21; 35) ?
(49; 22, 22, 22, 19; 36) A, D (49; 22, 24, 24, 18; 39) A, D
(49; 23, 20, 20, 22; 36) AD, T (49; 23, 23, 23, 18; 38) A, D
(51; 21, 25, 25, 20; 40) AD, T (51; 23, 22, 22, 21; 37) A, D
(53; 22, 24, 24, 22; 39) ? (53; 24, 22, 22, 24; 39) ?
(53; 24, 25, 25, 20; 41) ? (53; 26, 22, 22, 23; 40) D, X
(55; 23, 26, 26, 22; 42) AD, T (55; 24, 25, 25, 22; 41) ?
(55; 24, 27, 27, 21; 44) ? (55; 26, 23, 23, 24; 41) ?
(55; 27, 24, 24, 22; 42) ? (55; 27, 25, 25, 21; 43) ?
(57; 25, 25, 25, 24; 42) ? (57; 27, 25, 25, 23; 43) ?
(57; 27, 26, 26, 22; 44) ? (57; 28, 28, 28, 21; 48) D, X
(59; 26, 28, 28, 23; 46) ? (59; 27, 25, 25, 26; 44) ?
(59; 28, 29, 29, 22; 49) ?

In order to justify the claims made in this list, we give in section A examples of the propus di�erence
families having the required properties. (For v = 47 the examples are listed in section 2.)
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4 Exceptional series of propus parameter sets
We say that a propus parameter set (v; k1, k2, k3, k4 : λ) is exceptional if k1 = k2 = k3 = k4. The exceptional
parameter sets are parametrized by just one integer s > 1,

Πs = ( s2;
(
s
2

)
,
(
s
2

)
,
(
s
2

)
,
(
s
2

)
; s(s − 2) ). (7)

There exists a cyclic propus di�erence family with parameter set Π3. There exists also a propus di�erence
family (A, B, C, D) over the group Z3 × Z3 with the same parameter set and such that A is symmetric and
B = C = D. By using the �nite �eld Z3[α] where α2 = −1, we can take

A = {0, α, −α}, B = C = D = {α, 1 − α, α − 1}. (8)

For s = 5, it is reported in [1] that there are no propus di�erence families in Z25 having Π5 as its parameter
set. We performed another exhaustive search and found no such families in Z5 × Z5.

For s = 7, our non-exhaustive searches found no cyclic propus di�erence families having the parameter
set Π7. However, we found a cyclic di�erence family with parameter set Π7 and B = C with neither A nor D
symmetric:

A = [0, 1, 2, 3, 4, 8, 11, 12, 14, 19, 21, 24, 26, 27, 29, 37, 38, 41, 44, 45, 46],
B = C = [0, 1, 2, 3, 5, 7, 11, 14, 15, 17, 24, 27, 28, 29, 32, 35, 38, 43, 44, 45, 47],
D = [0, 1, 2, 5, 6, 8, 10, 11, 12, 14, 16, 18, 21, 22, 23, 30, 31, 32, 36, 37, 41].

While computing the propus parameter sets (v; x, y, y, z; λ) in the case when v = s2 is an odd square, we
observed an interesting feature. Namely, if in the de�nition of normalized propus di�erence sets we drop only
the condition that x ≥ z and if s is an odd prime then the number, Ns, of such parmeter sets is either s or s+2.
It follows from the proof of [1, Theorem 1] that Ns is equal to the number of odd positive integer solutions of
the Diophantine equation

ξ2 + 2η2 + ζ 2 = 4s2. (9)

After making additional computations, we decided to propose the following conjecture.

Conjecture 1. For any odd prime s, Ns − s − 1 ∈ {+1, −1}.

We have veri�ed our conjecture for all odd primes less than 10000. There are 1228 such primes. For 606 of
themwe have Ns = s and for the remaining 622 we have Ns = s+2. Thus the sequence Ns − s−1 is a {+1, −1}-
sequence when s runs through odd primes < 10000. We have sketched the partial sums of this sequence on
Figure 1. It shows that, for the �rst 1228 values of s, the partial sums of the sequence Ns − s − 1 are mostly
positive.

If s is a prime congruent to 1 (mod 4),we observed that apart fromΠs there is another normalized propus
parameter set with v = s2 and k2 = k3 =

(s
2
)
. Let us denote this new parameter set by

Π′
s = ( s2;

(
s
2

)
+ α,

(
s
2

)
,
(
s
2

)
,
(
s
2

)
− β; s(s − 2) + α − β ). (10)

The integers α and β are positive and satisfy the quadratic Diophantine equation

α2 + β2 = s(α − β). (11)

We propose another conjecture.
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Figure 1: Partial sums of the sequence Ns − s − 1, s odd prime

Conjecture 2. For any odd prime s ≡ 1 (mod 4) the Diophantine equation (11), in the unknowns α and β, has
a unique solution (a, b), where a and b are positive integers and 1 < a ≤ (s − 1)/2. Moreover, a − b is either a
square or 2 times a square.

We have veri�ed that this conjecture holds for s < 100000. If we drop the condition 1 < a ≤ (s − 1)/2, then
there exists one more solution, namely (s − a, b). Note also that the two solutions share the same b, and so
the integer b is uniquely determined by s.

A Appendix
The cyclic propus di�erence families listed below, except some of the families that belong to one of the two
in�nite series T and X, have been constructed by using a computer program written by one of the authors.
The program was run on two PCs, each with a single 64-bit processor. For v = 39 it takes about 5 minutes to
obtain a solution, about 20 minutes for v = 41, about 1 hour for v = 43, about 3 or 4 hours for v = 45, about
12 hours for v = 47, about 2 days for v = 49, and 5 days for v = 51. In all families below the base block B = C,
and to save space we omit the block C. The families are terminated by semicolons.

(43; 18, 21, 21, 16; 33)
[1, 3, 6, 9, 14, 15, 16, 19, 20, 23, 24, 27, 28, 29, 34, 37, 40, 42],
[0, 1, 2, 4, 5, 10, 12, 14, 15, 16, 17, 20, 21, 23, 24, 26, 27, 28, 32, 34, 41],
[0, 1, 2, 3, 9, 10, 13, 15, 18, 21, 29, 34, 36, 37, 38, 39];
[0, 1, 2, 3, 7, 8, 9, 10, 16, 17, 20, 22, 25, 28, 36, 41],
[0, 1, 2, 3, 6, 7, 9, 10, 12, 13, 14, 18, 20, 27, 29, 30, 31, 33, 34, 39, 41],
[1, 3, 6, 9, 14, 15, 16, 19, 20, 23, 24, 27, 28, 29, 34, 37, 40, 42];

(43; 19, 18, 18, 18; 30)
[0, 4, 9, 10, 11, 15, 16, 18, 19, 21, 22, 24, 25, 27, 28, 32, 33, 34, 39],
[0, 1, 2, 3, 11, 12, 17, 19, 20, 23, 24, 25, 27, 29, 31, 33, 36, 40],
[0, 1, 2, 3, 5, 10, 12, 15, 18, 23, 25, 26, 28, 29, 36, 39, 40, 41];
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[0, 1, 2, 5, 9, 10, 14, 16, 20, 23, 24, 27, 29, 30, 32, 34, 36, 38, 40],
[0, 1, 2, 3, 4, 8, 9, 10, 11, 14, 18, 21, 26, 27, 30, 32, 40, 42],
[2, 7, 8, 9, 10, 13, 15, 18, 21, 22, 25, 28, 30, 33, 34, 35, 36, 41];

(43; 21, 17, 17, 20; 32)
[0, 1, 3, 6, 7, 9, 11, 14, 16, 20, 21, 22, 23, 27, 29, 32, 34, 36, 37, 40, 42],
[0, 1, 2, 3, 5, 6, 7, 13, 15, 24, 25, 28, 29, 32, 37, 39, 40],
[0, 1, 2, 3, 10, 12, 14, 15, 18, 19, 20, 25, 28, 29, 31, 32, 34, 35, 37, 39];
[0, 1, 2, 3, 4, 7, 12, 13, 14, 18, 20, 23, 24, 28, 30, 32, 33, 34, 36, 38, 41],
[0, 1, 2, 5, 8, 10, 15, 17, 18, 19, 21, 24, 25, 30, 36, 37, 40],
[1, 3, 4, 5, 6, 7, 8, 13, 18, 21, 22, 25, 30, 35, 36, 37, 38, 39, 40, 42];

(43; 21, 19, 19, 16; 32)
[0, 1, 6, 11, 12, 13, 16, 17, 19, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 37, 42],
[0, 1, 2, 6, 8, 9, 12, 15, 17, 20, 22, 23, 24, 26, 27, 35, 36, 39, 41],
[0, 1, 2, 6, 8, 9, 11, 15, 16, 18, 20, 24, 28, 29, 31, 41];
[0, 1, 2, 3, 4, 7, 11, 13, 15, 17, 19, 20, 22, 32, 33, 34, 35, 37, 39, 40, 42],
[0, 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 20, 23, 24, 25, 27, 34, 38, 39],
[2, 3, 4, 10, 12, 14, 15, 20, 23, 28, 29, 31, 33, 39, 40, 41];

(43; 21, 21, 21, 15; 35)
[0, 1, 2, 3, 4, 8, 9, 12, 14, 19, 22, 23, 26, 28, 29, 31, 32, 34, 38, 39, 41],
[1, 4, 6, 9, 10, 11, 13, 14, 15, 16, 17, 21, 23, 24, 25, 31, 35, 36, 38, 40, 41],
[0, 7, 9, 13, 14, 15, 17, 18, 25, 26, 28, 29, 30, 34, 36];
[0, 1, 2, 3, 6, 7, 9, 11, 13, 15, 16, 17, 21, 22, 25, 26, 29, 33, 38, 39, 41],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 13, 16, 17, 20, 22, 25, 27, 29, 34, 35, 37, 40],
[0, 5, 6, 12, 13, 14, 16, 20, 23, 27, 29, 30, 31, 37, 38];

The last example consists of a D-optimal design (blocks A and D) and two copies of the Paley di�erence
set in Z43 (blocks B = C). It is taken from the paper [3].

(45; 18, 21, 21, 18; 33)
[4, 7, 8, 9, 10, 11, 16, 19, 20, 25, 26, 29, 34, 35, 36, 37, 38, 41],
[0, 1, 2, 3, 5, 7, 8, 12, 13, 16, 19, 22, 23, 27, 32, 34, 36, 39, 40, 42, 44],
[0, 1, 2, 3, 10, 12, 13, 15, 17, 19, 24, 25, 32, 34, 37, 38, 39, 41];

(45; 19, 20, 20, 18; 32)
[0, 1, 6, 12, 13, 14, 16, 17, 20, 22, 23, 25, 28, 29, 31, 32, 33, 39, 44],
[1, 3, 7, 8, 10, 11, 12, 13, 17, 20, 25, 28, 32, 33, 34, 35, 37, 38, 42, 44],
[1, 6, 12, 13, 14, 16, 17, 20, 22, 23, 25, 28, 29, 31, 32, 33, 39, 44];
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(45; 21, 18, 18, 21; 33)
[0, 4, 6, 11, 12, 13, 14, 17, 18, 20, 22, 23, 25, 27, 28, 31, 32, 33, 34, 39, 41],
[0, 1, 2, 5, 6, 8, 9, 11, 13, 20, 21, 23, 31, 32, 34, 37, 38, 41],
[0, 1, 2, 3, 6, 10, 12, 17, 18, 19, 21, 22, 23, 25, 33, 35, 37, 38, 40, 41, 42];

(45; 21, 20, 20, 17; 33)
[0, 2, 3, 4, 5, 10, 14, 15, 17, 19, 22, 23, 26, 28, 30, 31, 35, 40, 41, 42, 43],
[0, 1, 2, 3, 4, 8, 12, 13, 15, 22, 23, 26, 28, 30, 31, 36, 37, 39, 42, 43],
[0, 1, 2, 3, 4, 6, 10, 14, 20, 26, 27, 30, 33, 35, 37, 42, 43];
[0, 1, 2, 3, 8, 9, 15, 16, 18, 22, 23, 25, 28, 32, 33, 34, 36, 38, 39, 42, 43],
[0, 1, 2, 3, 5, 6, 8, 9, 12, 14, 16, 18, 19, 20, 24, 27, 29, 31, 32, 41],
[0, 1, 2, 7, 10, 12, 18, 19, 22, 23, 26, 27, 33, 35, 38, 43, 44];

(45; 21, 22, 22, 16; 36)
[0, 3, 4, 6, 7, 9, 11, 12, 13, 14, 18, 27, 31, 32, 33, 34, 36, 38, 39, 41, 42],
[0, 1, 2, 3, 4, 6, 9, 11, 14, 15, 16, 19, 20, 26, 28, 30, 34, 35, 36, 38, 42, 43],
[0, 1, 2, 3, 10, 11, 13, 17, 22, 23, 24, 27, 30, 34, 39, 42];
[0, 1, 2, 4, 6, 7, 9, 11, 12, 17, 21, 24, 25, 27, 28, 30, 32, 33, 34, 39, 43],
[0, 1, 2, 4, 5, 9, 10, 13, 14, 15, 18, 20, 21, 26, 28, 29, 35, 36, 38, 40, 42, 43],
[3, 9, 13, 15, 16, 17, 18, 19, 26, 27, 28, 29, 30, 32, 36, 42];

(45; 22, 19, 19, 18; 33)
[2, 3, 4, 7, 8, 10, 12, 13, 14, 17, 20, 25, 28, 31, 32, 33, 35, 37, 38, 41, 42, 43],
[0, 1, 2, 5, 9, 11, 14, 18, 19, 20, 22, 24, 26, 27, 30, 31, 32, 33, 34],
[0, 1, 2, 7, 9, 10, 13, 16, 17, 19, 24, 27, 33, 35, 36, 38, 40, 43];
[0, 1, 2, 3, 7, 10, 11, 15, 16, 18, 19, 20, 25, 28, 30, 31, 35, 36, 37, 40, 42, 43],
[0, 1, 2, 4, 6, 12, 19, 20, 21, 24, 25, 29, 31, 32, 33, 35, 40, 42, 43],
[1, 3, 4, 5, 8, 10, 11, 18, 21, 24, 27, 34, 35, 37, 40, 41, 42, 44];

(49; 22, 22, 22, 19; 36)
[1, 3, 5, 8, 9, 11, 12, 15, 16, 18, 19, 30, 31, 33, 34, 37, 38, 40, 41, 44, 46, 48],
[0, 1, 2, 3, 4, 5, 6, 9, 14, 15, 18, 25, 27, 30, 32, 33, 35, 37, 38, 42, 43, 44],
[0, 1, 2, 5, 6, 10, 12, 14, 18, 19, 21, 27, 32, 34, 35, 36, 40, 43, 45];
[0, 1, 2, 3, 4, 7, 10, 14, 15, 18, 19, 24, 26, 30, 31, 32, 33, 35, 37, 40, 41, 47],
[0, 1, 2, 3, 4, 6, 10, 11, 14, 16, 17, 23, 24, 31, 34, 36, 38, 39, 41, 42, 43, 47],
[0, 1, 3, 6, 8, 12, 18, 21, 22, 23, 26, 27, 28, 31, 37, 41, 43, 46, 48];

(49; 22, 24, 24, 18; 39)
[2, 3, 6, 8, 9, 17, 19, 20, 21, 22, 24, 25, 27, 28, 29, 30, 32, 40, 41, 43, 46, 47],
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[0, 1, 2, 3, 7, 8, 9, 16, 19, 21, 23, 25, 26, 28, 29, 32, 34, 36, 37, 38, 40, 41, 42, 46],
[0, 1, 2, 3, 7, 8, 12, 15, 17, 19, 26, 29, 36, 37, 39, 42, 43, 46];
[0, 1, 2, 3, 7, 10, 12, 13, 14, 17, 19, 20, 22, 23, 25, 26, 27, 28, 32, 37, 40, 46],
[0, 1, 2, 3, 4, 5, 6, 9, 11, 13, 14, 15, 17, 19, 22, 27, 28, 31, 33, 34, 35, 38, 43, 45],
[2, 5, 6, 10, 16, 17, 19, 23, 24, 25, 26, 30, 32, 33, 39, 43, 44, 47];

(49; 23, 20, 20, 22; 36)
[0, 1, 2, 4, 6, 8, 15, 16, 17, 20, 21, 23, 26, 28, 29, 32, 33, 34, 41, 43, 45, 47, 48],
[3, 6, 10, 13, 14, 15, 20, 21, 23, 24, 25, 26, 28, 29, 34, 35, 36, 39, 43, 46],
[1, 2, 4, 6, 8, 15, 16, 17, 20, 21, 23, 26, 28, 29, 32, 33, 34, 41, 43, 45, 47, 48];

(49; 23, 23, 23, 18; 38)
[0, 3, 4, 7, 9, 10, 11, 13, 15, 17, 18, 23, 26, 31, 32, 34, 36, 38, 39, 40, 42, 45, 46],
[0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 15, 16, 21, 23, 25, 27, 28, 32, 35, 40, 41, 43],
[0, 1, 2, 5, 6, 13, 15, 18, 21, 22, 27, 32, 34, 36, 37, 39, 46, 47];
[0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 15, 17, 20, 24, 27, 29, 33, 36, 38, 41, 44, 45, 47],
[0, 1, 2, 3, 5, 7, 8, 10, 12, 14, 20, 22, 23, 24, 30, 31, 32, 35, 36, 37, 38, 41, 46],
[3, 4, 10, 13, 14, 16, 20, 21, 24, 25, 28, 29, 33, 35, 36, 39, 45, 46];

(51; 23, 22, 22, 21; 37)
[0, 2, 4, 10, 11, 13, 16, 20, 21, 23, 24, 25, 26, 27, 28, 30, 31, 35, 38, 40, 41, 47, 49],
[0, 1, 2, 3, 4, 5, 9, 13, 15, 20, 22, 23, 27, 31, 32, 33, 38, 39, 41, 44, 47, 48],
[0, 1, 2, 3, 6, 8, 9, 12, 13, 14, 17, 19, 22, 31, 34, 36, 37, 38, 40, 44, 49];
[0, 1, 2, 3, 4, 5, 10, 12, 13, 14, 15, 19, 21, 22, 28, 30, 34, 37, 39, 41, 42, 47, 49],
[0, 1, 2, 4, 5, 8, 10, 13, 18, 19, 21, 24, 25, 28, 29, 31, 33, 35, 38, 39, 40, 43],
[0, 2, 3, 4, 5, 6, 9, 13, 19, 20, 25, 26, 31, 32, 38, 42, 45, 46, 47, 48, 49];

(51; 25, 25, 21, 20; 40)
[0, 1, 4, 5, 7, 9, 15, 16, 17, 18, 22, 29, 33, 34, 35, 3642, 44, 46, 47, 50],
[0, 1, 2, 4, 5, 7, 8, 11, 15, 16, 21, 23, 25, 26, 28, 30, 35, 36, 40, 43, 44, 46, 47, 49, 50],
[1, 4, 5, 7, 9, 15, 16, 17, 18, 22, 29, 33, 34, 35, 36, 42, 44, 46, 47, 50];

(53; 26, 22, 22, 23; 40)
[1, 5, 6, 10, 11, 12, 15, 18, 22, 27, 28, 29, 30, 32, 33, 34, 36, 37, 39, 40, 44, 45, 46, 49, 50, 51],
[0, 1, 2, 3, 9, 11, 18, 21, 24, 25, 29, 33, 34, 35, 36, 41, 44, 46, 48, 49, 50, 52],
[0, 1, 3, 9, 10, 12, 14, 16, 17, 20, 23, 25, 28, 30, 33, 36, 37, 39, 41, 43, 44, 50, 52];
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(55; 23, 26, 26, 22; 42)
[0, 6, 7, 10, 11, 15, 17, 18, 19, 21, 24, 26, 29, 31, 34, 36, 37, 38, 40, 44, 45, 48, 49],
[1, 2, 4, 8, 14, 16, 17, 18, 19, 23, 24, 25, 27, 28, 30, 31, 32, 36, 37, 38, 39, 41, 47, 51, 53, 54],
[6, 7, 10, 11, 15, 17, 18, 19, 21, 24, 26, 29, 31, 34, 36, 37, 38, 40, 44, 45, 48, 49];

(57; 28, 28, 28, 21; 48)
[2, 4, 12, 13, 15, 21, 23, 24, 25, 27, 28, 31, 35, 37, 38, 39, 40, 41, 43, 46, 47, 48, 49, 50, 51, 52, 54, 56],
[0, 1, 2, 3, 4, 6, 9, 11, 13, 16, 17, 20, 23, 28, 31, 32, 34, 35, 37, 39, 40, 41, 43, 44, 45, 49, 50, 53],
[0, 1, 4, 6, 13, 14, 15, 19, 20, 21, 26, 31, 36, 37, 38, 42, 43, 44, 51, 53, 56];
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