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MATHEMATICS

EQUILATERAL POINT SETS IN ELLIPTIC GEOMETRY
BY

J. H. VAN LINT axp J. J. SEIDEL

(Communicated by Prof. C. J. Bouwramp at the meeting of December 18, 1965)

1. Introduction on geomeiry
Elliptic space of r—1 dimensions K, is obtained from r-dimensional
vector space R, with inner product (a,b) as follows. For 1<k<r, call

any k-dimensional linear subspace Ri of R, a (k—1)-dimensional elliptic
subspa,m B and. for any pa-ir of ellintic noints Ho: z =10 and Fo': x=ub,
f v A v i ’

ce fip—3, ana, 10r an ot ellip oInt

define the elliptic distance 6(Ho, Eo') by

[(2,8)]
Via, a) (6, 6)’

cos 0(Ho, By') = 0<d<im,

which, by taking |a|=|b|=1, reduces to
e cos 6(Ho, Ho')=(a,b), e= £+ 1, 0<d< S,

The unit sphere in R, provides a model for E,—, any elliptic point being
represented by a pair of antipodal points. In this model we easily verify,
by consideration of the 12 vertices of a regular icosahedron, that the
elliptic plane Ez contains an equilateral 6-tuple all of whose distances
equal arccos(1/)/5). This leads to the following problem.

1.1 Problem. For all positive integers 7, find the integers n such that

in E,_1 there exists an equilateral n-tuple. What is the distance and

" the structure of such n-tuples? For any given r, what is the maximum,
n(r) say, of nt

The significance of this problem is caused by certain peculiarities in
elliptic geometry. For instance, in the elliptic plane two triples with equal
elliptic distances need not be superposable by elliptic motion. The existence
of equilateral 6-tuples has consequences for the congruence order of the
elliptic plane. This congruence order is defined as the smallest integer &
with the property that any semimetric space is imbeddable in the elliptic
plane whenever each of its k-tuples is. HaanTsEs and SEIDEL ([9], [15])
proved that this integer equals 7. The corresponding question for elliptic
space of dimensions >3 is still open, see BiumeNTHAL ([5], P. 269).
In addition, problem 1.1 is related to the theory of polytopes. Let
ai, ..., &y be unit vectors in R, carrying an equilateral n-tuple of E,—i.
The convex hull in R, of the vectors + a1, ..., -+ a4 is a spherical polytope
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of some kind of regularity, cf. Coxurer [7], FriEs TéTH [8]. The convex
hull in R, of the vectors 4+ a1 + ag ... 4 a, is an isozonohedron whose
2-faces are congruent rhombs, cf. BiLinskr [3]. Finally we mention that
the problem of the biologist Tammes (cf. [8], p. 214), asking how to select
on the sphere n points such that the smallest of their distances is as big
as possible, has an analogue in elliptic geometry which was recently
attacked by Fryms Térm [17].

Problem 1.1 was solved by HaanTses [10] for r=3 and r=4; he showed
that n(3)=n(4)=6. In the present paper the complete solution for r=5
is given. It is shown that n{5)=10, n{6)=16, and »(7)>28. Thus a con-
jecture of BLuMENTHAL and KeLLY ([4], p. 104)isdisproved. The maximum
10-tuple in B4 shares with the plane equilateral 6-tuple the property that
the only eigenvalues of its Gram mafrix are 0 and 2, with equal multi-
plicities. Point sets with this property are shown to exist for infinitely
many, but not for all, odd . However, the lower bounds for %n(r) obtained
by considering these point sets are offen improved by the existence of
other equilateral point sets, as for instance the maximum 16-tuple in Es
and a 28-tuple in K. These bounds are treated in section 6; for geometrical
comments we refer to section 7.

2. Introduction on matrices

In section 3 we shall show that the query for equilateral point sets
in elliptic geometry leads to the search for matrices B of order » and

elements
bu=0,by=bs= 4+ 1, (t#75¢,7=1, ..., n),

whose smallest eigenvalue has a high multiplicity. We first give two
examples of such matrices. Let I denote 1) the k x k& unit matrix, J; the
k x k matrix consisting solely of 1's, and e; the kx 1 matrix consisting
solely of 1’s.

2.1 Example. The 16x 16 compound matrix consisting of the blocks
J4—1I4 on the diagonal and 2I,—J, elsewhere has six eigenvalues 5

and ten eigenvalues —S3.
0 eg'
€9 D)’

where D consists of the blocks J3—I3 on the diagonal and 2I3—J3
elsewhere, is a 10 x 10 matrix with five eigenvalues 3 and five eigen-
values —3.

2.2 Example. The matrix

Example 2.1 is representative of some special matrices, to be treated in
section 6, which provide bounds for n(r). Example 2.2 provides the solution
for n=10 to the following problem.

1) We shall delete the subscripts if there is no fear of confusion.
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2.3 Problem. TFind all symmetric matrices C with diagonal elements 0
and other elements 1 or —1 whose square is a multiple of the unit
matrix.

Such C-matrices appear in the literature at various places. Their existence
for order n satisfying:

2.4 Condition. = =2 (mod 4), n=p*+1, p prime,

was proved by Patey [11], who used them for the construction of
Hadamard matrices of order 2n. In section 5 we shall see that the
search for C-matrices of ordernis a block-design problem with {v, b, k, r, 1} =
={n, 2n—2,%n, n-1, In— 1}.

RacHAVARAO ([13], [14]) encountered C-matrices in the construction of
weighing designs. He showed that a necessary condition for the existence
of rational square matrices of order n = 2 (mod 4) is that (n—1, —1)p=1
for all primes p, where (a, b), denotes the Hilbert normresidue symbol.
Tt can be seen that this implies the nonexistence of C-matrices of order
n satisfying:

2.5 Condition. n =2 (mod 4), n—15#a2+02%; @ and b integers.

Brreviter ([1], [2]) encountered C-matrices in conference telephony.
Recently he obtained 2.4 and 2.5, the last condition appearing already
in his 1950 paper. His proof of the Bruck-Riyser-type theorem which
implies 2.5 led the authors, who independently came to 2.4 and to the
impossibility for n=22, to the elementary proof of theorem 5.2.

3. Re-wording of the problem 1)

For n elliptic points Ai, Az, ..., An, carried by the unit vectors
a1, @s, ..., an and spanning elliptic space E,-i, the Gram matrix with
elements

((}Li, (lj)=8ij CcOoS 5(14.@, A]‘), gy =¢&ji— i 1, &= 1, 0<5<%7I,

is symmetric, semipositive definite, and of rank r. Conversely, BLUMENTHAL
([5], p. 208) showed that to any matrix with these properties there exist
n points in E,—; whose distances are given by this formula. Thus, in order
to investigate equilateral n-tuples in E,— we ask for symmetric matrices
A with elements

au=1, ay=2sya, (t#j34,5=1,...,m)
that are semipositive definite with rank r, i.e. that have smallest eigen-
value 0 with multiplicity »—7r. In other words, we ask for matrices

B=a-Y(A—1I,) whose smallest eigenvalue has multiplicity n—r. Any such
matrix B with smallest eigenvalue 2o leads to an equilateral n-tuple in

1) The suthors thank G. W. Veltkamp for valuable discussions on this section.
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B, with distance d=arccos(—1/4y). However, equilateral n-tuples are
not characterized by single matrices but by the classes of such matrices
under the equivalence relation generated by the following operations.

3.1 Operation. Multiplication by —1 of any row and the corresponding
column (replacement of a vector by its opposite has no effect on the
corresponding elliptic point).

3.2 Operation. Interchange of two rows and, simultaneously, of the
corresponding columns (the order of the points is irrelevant).

Thus we arrive at the following formulation, in terms of maptrices, of the
original problem.

3.3 Problem. Tor all positive integers , find the integers n and the
classes under 3.1 and 3.2 of matrices B with order # and elements

bis=0,byy=bp=cy= £ 1,  (i+#£§;4,i=1, ..., n)

whose smallest eigenvalue has multiplicity # —r. What is this smallest
eigenvalue? For any given r, what is the maximum 7n(r)?

Omitting for a moment the condition on the smallest eigenvalue we first
try to obtain, for all #, a survey of all equivalence classes, under 3.1
and 3.2, of matrices B. This step may be formulated in combinatorial
terms by representing any matrix B of order n» by an n-graph, viz. by
an n-tuple of points connecting any pair of points ¢ and j if and only if
bij=—1. By 3.2 we need not consider an ordering in the n-tuple. The
operation corresponding to 3.1 is called complementation and reads as
follows.

3.4 Operation. Cancel for any point the existing connections and add
for that point the nonexisting connections.

The combinatorial problem is then:

3.5 Problem. Give, for all #, a survey of the equivalence classes, under
complementation, of all n-graphs.

4. Tables

The number of equivalence classes of n-graphs increases very rapidly
with n. We constructed all classes for n<7.

4.1 Table. The first table contains the classes for n=2, 3, 4, 5, 6, each
given by one representative. They are arranged according to the
partial order of inclusion. Any class, represented by some #n-graph,
is said to include each of the classes that contains a sub m-graph,
m<n, of that n-graph. The number of inclusions is indicated with
each class. Furthermore, for each class the eigenvalues, approximate
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to two decimals, are given. Two classes are called complementary if
they have complementary representative graphs. The selfcomplemen-
tary classes are indicated.

4.2 Table. For n="17 there are 54 classes, complementary in pairs, half
of which are tabulated in the second table. There are no selfcom-
plementary classes for n=7 as can be seen from the eigenvalues.

Some of the 7-graphs were extended to 8-graphs in all possible ways in
order to investigate whether the multiplicity of the smallest eigenvalue
increases. It turned out that type 26 and its complement are not, and
that types 9, 27 and its complement are extendable to 8-graphs with
threefold smallest eigenvalue. Type 9 leads to the ladder 8-graph,
consisting of four pairs of connected points, which is not extendable in
this way any further. Type 27 and its complement lead to an 8-graph
which is extendable to the Petersen 10-graph ([12], p. 194) which has
eigenvalues —3 and 3, each fivefold.

5. C-matrices

B-matrices of order n=2r that have only two distinct eigenvalues with
equal multiplicities r are called C-matrices. They are orthogonal with
eigenvalues Vn—1 and —)n—1. The orthogonality of any three rows
implies the necessary condition n = 2 (mod 4). The following construction
was given by Parpy [11] and Wirriamson [16].

5.1 Construction. For C-matrices of order n=p*+1 =2 (mod 4), p
prime.

Let a1, ..., an_1 be the elements of any Galois field G F(p*), Define x(0)=0

and y(@)=1 or —1 according as a0 is or is not a square in GF(p%).

Then the matrix with elements

cip=y(@1—0a7); in=Cni=1; Cpn=0; %,j=1,...,n—1
is a C-matrix since Sgeer@e x(@)y(a-+b)=—1 for b=0.
However, O-matrices do not exist for all n = 2 (mod 4), as aconsequence
of the following theorem.

5.2 Theorem. A necessary condition for the existence of a square
rational matrix @ of order ¢ = 2 (mod 4) satisfying Q'@=ml,, m
integer, is that m is a sum of two squares of integers.

Proof. By Lagrange’s four-square theorem we may write m=my2+
A+ me® 4 mg? - ma® with ma, ma, ms, mg integers. Put

/M1 —mg —mM3  —Ma\
{ \ 4 B
me ma — M4 msa
M= and Q=
m3 My my —Mmg cC D
my —MmM3 ma ma
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with square A of order 4. It follows that M’'M =ml,. Any row of M may

be multiplied by —1 without altering this property. Since det M 0, it

is not possible that det (4 —2)=0 for all possible choices of M. Hence

we may assume det (4 — M)£0. We now prove for Q*=D —C(4—M)-1B

that @*'Q*=ml,—4 by calculating in two ways the matrix product

(A’ O’ (A B\ { (4— M)—lB\

J\B" D'J\C D)\ I

Indeed, denote the factors by X, ¥, Z, U, then
X(YZ)U=B'(4"— M) 'm(A—M)2B+ml;q,

(XY)ZU)=B'(A"—M")\ 1M M(A— M) B+Q*Q*.

(—B’(A’—M’)—l Ips )

Thus we come to a matrix @* of order ¢—4, satisfying the conditions of
the theorem. By iteration a matrix of order 2 is obtained, hence m is a
sum of two squares of rationals. Since m is an integer we conclude that
m is a sum of two squares of integers.

5.3 Remark. Application of the theorem to
0 ¢
Q= (e R ) , R'R+J =(n—1)I, R rational,

makes the resemblance to the Bruck-Ryser theorem [6] on R'R —J =
{(n—1)I apparent.

5.4 Theorem. For any C-matrix of the form

o 0 ¢ L i P (e J—-D-1I)
=<€ D),tematnx = 0%(J—D+I)>

is the (0, 1) incidence matrix of a balanced incomplete block design
0,0,k r,)=(n,20—2, In,n—1, In—1).

Proof. (%=(n—1)I implies De=0 and D?+J =(n—1)I. We check the
basic properties of the incidence matrix of (v, b, k, 7, 2) configurations:

n—1 (Fn—1)e

PP= ((%n— e 3nl+@GEn—1)J

) , (1L eYP =1in(e ¢).

5.5 Remark. In view of the existence of a Hadamard matrix of order
92, it would be interesting to know whether Paley’s construction
may be reversed in order to obtain a C-matrix of order 46, the smallest
order which is not covered by 5.1 and 5.2 and for which the existence
of C-matrices is as yet undecided.

6. Results on n(r)
6.1 Lemma. Let B be a B-matrix of order n whose smallest eigenvalue
4o has multiplicity »—r and whose other eigenvalues are i, ..., A,
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Then
2'0 > — (n — l)r ’
n—r
equality holding if and only if A1=...=42.

Proof. The consistency of the equations
M+ .t ly =trB —(n—r)o =—(n—7r)lo
A2+ AR2=trB2— (n—r)it=n(n—1)— (n—1)ig?

yields (n—r)222<rn(n—1)—r(n—r)ie?, from which the assertion follows.

6.2 Lower bound. mn{r)>2r—2.

Proof. Consider the ladder graph, i.e. the (2r—2)-graph consisting
of r—1 pairs of connected points. The corresponding B-matrix is

fJ— I J—2I\
kJ—2I J— I)'

By elementary methods the eigenvalues are found to be —3 (with multi-
plicity »—2), 1 (with multiplicity »—1), and 2r—5. Therefore A=I14-%1B
is the Gram matrix of 2r—2 vectors in R, which form an equilateral
(2r —2)-tuple in B, with distance arccos 4. This proves the assertion.

The C-matrices considered in section 5 provide examples of values of r
for which better bounds are available. As a consequence of 5.1 we have:

6.3 Lower bound. If 2r—1=1 (mod 4) is a prime power then
n(r) > 2r.

We shall now prove that for r=5 this result is best possible.

6.4 Theorem. n(5)=10.

Proof. Suppose n(5)>10. Then there exists a B-matrix of order 11,
Bi1 say, with smallest eigenvalue A9 of multiplicity 6. From 6.1 it follows
that do> —5//3. On the other hand I11— Bufd is the Gram matrix of
11 vectors in Rs. Therefore, By has a principal submatrix B; of order
7 with smallest eigenvalue 49 of multiplicity 2. Now table 4.2 contains
only type 26 to meet these conditions. However it is easily checked by
inspection that type 26 is not extendable to a matrix of order 8 with
threefold smallest eigenvalue Ao. Thus we have #(5)<10 and by 6.3 the
theorem is proved.

For the case r=6 we shall need B-matrices of order 8 with smallest
eigenvalue of multiplicity >2. A complete table for n=8 is superfluous
for our purpose since for the proof of the following theorem 6.5 the only
information needed is that such B-matrices do not exist for smallest
eigenvalue 1> —3, dg# — 1. This is easily checked by inspection of the
relevant types of table 4.2.
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6.5 Theorem. n(6)=186.

Proof. Example 2.1 provides a B-matrix Big of order 16 with smallest
eigenvalue — 3 of multiplicity 10. Now suppose n(6)>16, then a B-matrix
Bi7 of order 17 exists with smallest eigenvalue Ay of multiplicity 11.
From 6.1 it follows that o> —& 1/66. On the other hand B;; must have
a principal submatrix Bs of order 8 with this same smallest eigenvalue
Ao of multiplicity 2. As remarked above there is no such Bg. This proves
the theorem.

In the case r=25 the largest equilateral point set is furnished by a
C-matrix. The following lower bound implies, as did already theorem 6.5,
that this is not the case for r="71.

6.6 Lower bound. =(7)>28.

Proof. We construct 28 vectors, spanning R», of length /3, such that
the inner product of any pair equals 1 or —1. For that purpose we first
remark that the vectors

1,1,1,0,0,0,0), (1, -1, —-1,0,0,0,0), (—1,1, —1,0,0, 0, 0),
(_-]-, _17 1’ Oa O’ 0>0)

have that property. Secondly we observe that the same holds for the
row vectors of the 7 x 7 incidence matrix of the finite projective geometry
of order 2, since any row contains 3 ones and 4 zeros and any pair of
rows has 1 one in common. Combining these observations we obtain
the desired 28 vectors in R;. In fact they are the projections on the
hyperplane x;=1 of the 28 half sums of the pairs of row vectors of the
normalized Hadamard matrix of order 8.

6.7 Remark. By 6.1 the existence of this 28-tuple implies that the
corresponding B-matrix has, apart from a 21-fold eigenvalue —3, a
7-fold eigenvalue 9. We conjecture that #(7) =28. Indeed, the existence
of a B-matrix of order 29 with 22-fold smallest eigenvalue
Jo> —VZ38> — 3 seems implausible.

6.8 Remark. Trivially 6.6 implies »(8)>28. It is not possible to extend
any further the set of 28 vectors, mentioned in 6.6, in order to obtain
a better bound for n(8). Indeed, place this set in the hyperplane zg=0
of Rg, then it is easily seen that no vector of Es has inner product
@ or —a, a#0, ¢ constant, with each of the 28 vectors.

6.9 Remark. From 6.1 it follows that for r>9 there do not exist
B-matrices whose smallest eigenvalue with multiplicity n—r equals
—3, and whose other eigenvalues are all equal.

6.10 Remark. It isnot difficult to construct examples for other values
of r showing that #(r)>2r. For instance the blockmatrix of order
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64 consisting of the blocks Bg (of example 2.1) on the diagonal and

T16— Big elsewhere has two eigenvalues — 7 and 9 with multiplicities
36 and 28 respectively. This implies n(28)> 64.

7. Equilateral point sets in Ey-1

From sections 4 and 6 it follows that B4 contains the following equilateral
point sets of order >7:
(i) a 7-tuple with distance 67°25'7" whose graph is type 26 of 4.2,
(ii) a 7-tuple with distance 73°22'8” whose graph is the complement
of type 26 of 4.2, :
(iii) an 8-tuple with distance arccos ¥ whose graph is the ladder 8-graph,
(iv) a 10-tuple with distance arccos ¥ whose graph is the Petersen graph.

Furthermore we found the following equilateral point sets:
(v) a 16-tuple in Es with distance arccos } and matrix 2.1,

(vi) a 28-tuple in He¢ with distance arccos

ol Cop=t

We add some geometrical comments.

71 Lemma. The existence of » points in Sy, spanning that sphere
and having only two distinct spherical distances x and f, implies
the existence in B, of an equilateral n-tuple provided cos «+ cos <0,
and of an equilateral (n+ 1)-tuple provided

cos &+ cos B=2 cos & cos $<0.
Proof. By cos x-+ cos §<0, we may determine R and ¢ such that
1— cos x=R2(1— cos @), 1 — cos f=R2(1+ cos ¢), B>1, 0<g<=x.

Now imbed the unit sphere Sy—1 with its n points in the r-dimensional
sphere S, of radius R, at the euclidean distance /R2—1 from the origin.
Then on S, the = points have spherical distances ¢ and z—¢. These
distances equal the spherical distance of the small sphere to its poles on
8; if and only if Rsin p=1, which is equivalent to

cos o+ cos =2 cos « cos f.

By transition from spherical to elliptic geometry the lemma is proved.

7.2 Solution. The equilateral 28-tuple in Hs.

The end points of the unit vectors in Rs are the 8 vertices of a regular
simplex of 7 dimensions &, contained in the hyperplane 32, z;=1. We
shift this hyperplane over the euclidean distance 1/y8 in order to situate
&7 in the hyperplane 3%, 2;=0. Then the 28 midpoints Pa,, (h<1;
h,i=1, ..., 8) of the edges of a7 have coordinates P1,2=(3,3, —1, —1, —1,
—1, —1, —1), etc., up to a common factor. Connect the origin with all
points Py ;, then each pair of lines has angle arccos §. Therefore, the lines
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constitute an equilateral 28-tuple in Hs. Its graph is the complement of
the graph obtained by putting the 28 points P;,; in the upper left corner
of a chessboard and by connecting Pj; and P ;= Whenever their index
pairs have one number in common.

7.3 Remark. The 28-tuples of 7.2 and 6.6 are the same. The relation
to Gosset’s semi-regular polytopes (cf. CoxeTEr [7], p. 202) is as
follows. Our equilateral 28-tuple in Eg consists of the lines connecting
the 28 pairs of opposite vertices of the 7-dimensional 3z. Also it is
obtained by the process of Lemma 7.1 from the 27 points of the
6-dimensional 21, since these form a spherical two-distance set with
cos x=% and cos f=—1.

7.4 Solution. The equilateral 16-tuple in s.

The subset of the 28 points Py,; of 7.2 that satisfies, apart from Y%, #;=0,
the condition 2; = x; contains the 16 points P12 and P; z, <k;5,k=3,...,8).
The lines connecting the origin with these points span an R¢ and hence
constitute an equilateral 16-tuple in E5 with distance arccos %. Its graph
is the corresponding subgraph of the graph mentioned in 7.2.

A direct equivalent representation of this 16-tuple is the following.
Consider the measure polytope (hypercube) ys in Rg whose 64 vertices
have coordinates (4- 1, 41, -1, == 1, &= 1, 4~ 1). Select the 32 vertices
of the half measure polytope kys by allowing only even numbers of negative
signs. Connecting the opposite vertices we again obtain an equilateral
16-tuple in Es. If we represent it by (1,1, 1, 1, 1, 1) and the 15 permuta-
tions of (1,1,1,1, —1, —1) we obtain the graph referred to above. An
equivalent graph is obtained when the 16-tuple is represented and renamed
@Qn.i, (h,i=1, 2, 3, 4) according to

(1,1,1, 1, 1, 1),(—1,-1,1, 1, 1, 1)
(-1,1,-1, 1, 1, 1),(1,—-1,-1, 1, 1, 1)
(L, L,1, 1,—1,—1),(=1, 1,1, 1, —1, —1),
(-1,1, -1, 1,-1,—1),(1, -1, =1, 1, —1, —1),
(1, 1,1, -1, 1,=1),(=1, 1,1, —1, 1, —1),
(—1,1, -1, -1, 1,-1),(1, -1, -1, —1, 1, —1),
(L L,1, -1, -1, 1),(=1,—-1,1, -1, -1, 1),
(—1,1, =1, —1, =1, 1),(1, =1, =1, —1, —1, 1).

Then its graph is the complement of the graph obtained by connecting
@ni and Qs if h=4 and if ¢=Fk. This is precisely the representation
corresponding to the B-matrix of example 2.1.

7.5 Remark. The 16-tuple is also obtained by applying Lemma 7.1
to the 15 midpoints of the edges of a regular simplex 5. Indeed, on
Sy these form a two-distance set with cos x=—1 and cos p=4%.
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7.6 Solution. The equilateral 10-tuple in Ej.

The subset of the 28 points Py, ; of 7.2 that satisfies the condition z; = xs =23
contains the 10 points Pjyx, (j<k; i, k=4, ..., 8). They lead to an equi-
lateral 10-tuple in H; with distance arccos }. Their graph, the corre-
sponding subgraph. of the graph mentioned in 7.2, is the selfcomplementary
Petersen graph.

A direct equivalent representation of this 10-tuple is obtained by
applying Lemma 7.1 to the 10 midpoints of the edges of a regular simplex
og, which on 83 form a two-distance set with cos x=1 and cos f= —%.

7.7 Remark. Using the representation of 7.4 we observe that the
Petersen graph is equivalent to the subgraph consisting of Q4,4 and
Qjx> (, k=1, 2, 3). Geometrically this corresponds to the following
construction. The sphere Ss is fibered over a great sphere Sz as base
space with great circles S as fibers. The fibers issuing from a small
circle on S form a torus. Take the radius of this small circle equal
to } /2, then the radii of the torus are equal. Therefore it is possible
to select on the torus 9 points that constitute a two-distance set on
S3 with distances cos x =% and cos = —%. Applying Lemma 7.1 we
again obtain the equilateral 10-tuple in H.

7.8 Solution. The ladder 8-tuple in H,.

The ladder graph of the equilateral 8-tuple in E; with distance arecos
is equivalent to the subgraph formed by @1; and @, (1=1, 2, 3, 4) of the
16-graph considered in 7.4. This 8-tuple was obtained by BLUMENTHAL
and KerLy ([4], p. 104) from the 8-vertices of a regular cross polytope
ps by the process of Lemma 7.1.

7.9 Remark. The subset of Pj,; of 7.2 that satisfies x3=ze=a23=124
contains the 6-points Pjz, (j<k;j, k=5,6,7,8). It furnishes an
equilateral 6-tuple in K3 whose graph is equivalent to the ladder
6-graph. This 6-tuple, which is obtained directly from the midpoints
of a regular simplex «g, occurs in Haaxrtses [10]. \
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