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Abstract

A construction method for orthogonal ±1 matrices based on a
variation of the Williamson array called the propus array

A B B D
B D −A −B
B −A −D B
D −B B −A

gives symmetric propus-Hadamard matrices.
We show that for

• q ≡ 1 (mod 4), a prime power, symmetric propus-Hadamard ma-
trices exist for order 2(q + 1); and

• q ≡ 1 (mod 4), a prime power, and 1
2
(q + 1) a prime power or the

order of the core of a symmetric conference matrix (this happens
for q = 89) symmetric propus-type Hadamard matrices of order
4(2q + 1) exist.

We give constructions to find symmetric propus-Hadamard matrices
for 57 orders 4n, n < 200 odd.
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1 Introduction

Hadamard matrices arise in statistics, signal processing, masking, compres-
sion, combinatorics, weaving, spectroscopy and other areas. They been
studied extensively. Hadamard showed [13] the order of an Hadamard matrix
must be 1, 2 or a multiple of 4. Many constructions for ±1 matrices and
similar matrices such as Hadamard matrices, weighing matrices, conference
matrices and D-optimal designs use skew and symmetric Hadamard matrices
in their construction. For more details see Seberry and Yamada [29].

An Hadamard matrix of order n is an n × n matrix with elements ±1
such that HH⊺ = H⊺H = nIn, where In is the n × n identity matrix and ⊺
stands for transposition. A skew Hadamard matrix H = I + S has S⊺ = −S.
For more details see the books and surveys of Jennifer Seberry (Wallis) and
others [29, 33] cited in the bibliography.

Theorems of the type for every odd integer n there exists a t dependent on
n so that Hadamard, regular Hadamard, co-cyclic Hadamard and some full
orthogonal designs exist for all orders 2tn, t integer are known [36, 37, 38, 39].
A similar result for symmetric Hadamard and skew-Hadamard matrices has
not yet been published but is conjectured.

The Propus construction is a construction method using orthogonal ±1
matrices, A, B = C, and D, where

AA⊺ + 2BB⊺ +DD⊺ = constant I,

I the identity matrix, called propus matrices, based on the array

A B B D
B D −A −B
B −A −D B
D −B B −A

to construct symmetric Hadamard matrices.
We give methods to find propus-Hadamard matrices: using Williamson

matrices and D-optimal designs. These are then generalized to allow non-
circulant symmetric matrices with the same aim to give symmetric Hadamard
matrices.

We show that for

• q ≡ 1 (mod 4), a prime power, the required matrices exist for order
t = 1

2(q + 1), and thus symmetric Hadamard matrices of order 2(q + 1);

• q ≡ 1 (mod 4), a prime power, and 1
2(q + 1) a prime power or the

order of the core of a symmetric conference matrix (this happens for
q = 89) the required symmetric propus-type Hadamard matrices of
order 4(2q + 1) exist;
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• t ≡ 3 (mod 4), a prime, such that D-optimal designs, constructed using
two circulant matrices, one of which must be circulant and symmetric,
exist of order 2t, then such symmetric Hadamard matrices exist for
order 4t.

• 4−{t; s1, s2, s3, s4; ∑
4
i=1 si(si−1)

t−1 } sds, 4t = a2+ b2+ c2+d2, a ≡ b = c ≡ d ≡ t
(mod 4), a = 2s1 − t, b = 2s2 − t, c = 2s3 − t, d = 2s4 − t, where one of
the supplementary difference sets is symmetric then such symmetric
Hadamard matrices exist for order 4t.

We note that appropriate Williamson type matrices may also be used to
give propus-Hadamard matrices but do not pursue this avenue in this paper.
There is also the possibility that this propus construction may lead to some
insight into the existence or non-existence of symmetric conference matrices
for some orders. We refer the interested reader to mathscinet.ru/catalogue/
propus/.

1.1 Definitions and Basics

Two matrices X and Y of order n are said to be amicable if XY ⊺ = Y X⊺.
We define the following classes of propus like matrices. We note that

there are slight variations in the matrices which allow variant arrays and
non-circulant matrices to be used to give symmetric Hadamard matrices,
All propus like matrices A, B = C, D are ±1 matrices of order n satisfy the
additive property

AA⊺ + 2BB⊺ +DD⊺ = 4nIn, (1)

I the identity matrix, J the matrix of all ones.
We consider the following classes of ±1 of order n:

• propus matrices: four circulant symmetric ±1 matrices, A, B, B, D of
order n, satisfying the additive property (use P );

• propus-type matrices : four pairwise amicable ±1 matrices, A, B, B, D
of order n, A⊺ = A, satisfying the additive property (use P );

• generalized-propus matrices: four pairwise commutative ±1 matrices,
A, B, B, D of order n, A⊺ = A, which satisfy the additive property
(use GP ).

We use two types of arrays into which to plug the propus like matrices:
the Propus array, P , or the generalized-propus array, GP . These can also be
used with generalized matrices ([32]).

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A B B D
B D −A −B
B −A −D B
D −B B −A

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and GP =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A BR BR DR
BR D⊺R −A −B⊺R
BR −A −D⊺R B⊺R
DR −B⊺R B⊺R −A.

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.
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2 Symmetric Propus-Hadamard Matrices

We first give the explicit statements of two well known theorem, Paley’s
Theorem [27], for the Legendre core Q, and Turyn’s Theorem [30], in the
form in which we will use them.

Theorem 1. [Paley’s Legendre Core [27]] Let p be a prime power, either
≡ 1 (mod 4) or ≡ 3 (mod 4) then there exists a matrix, Q, of order p with
zero diagonal and other elements ±1 satisfying QQ⊺ = (q + 1)I − J , Q is
symmetric or skew-symmetric according as p ≡ 1 (mod 4) or p ≡ 3 (mod 4).

Theorem 2. [Turyn’s Theorem [30]] Let q ≡ 1 (mod 4) be a prime power
then there are two symmetric matrices, P and S of order 1

2(q + 1), satisfying
PP ⊺ +SS⊺ = qI: P has zero diagonal and other elements ±1 and S elements
±1.

2.1 Propus-Hadamard Matrices from Williamson Matrices

Lemma 1. Let q ≡ 1 (mod 4), be a prime power, then propus matrices exist
for orders n = 1

2(q + 1) which give symmetric propus-Hadamard matrices of
order 2(q + 1).

Proof. We note that for q ≡ 1 (mod 4), a prime power, Turyn (Theorem 2
[30]) gave Williamson matrices, X + I, X − I, Y , Y , which are circulant and
symmetric for orders n = 1

2(q + 1). Then choosing

A =X + I, B = C = Y, D =X − I

gives the required propus-Hadamard matrices.

We now have propus-Hadamard matrices for orders 4n where n is in

{1,3, [5],7,9, [13],15,19,21, [25],27,31,37, [41],45,49,51,55,57,59,

[61], [63],67,69,75,79,81, [85],87,89,91,97,99,105,111,115,117,119,121,

127,129,135,139,141, [145],147,157,159,169,175,177, [181],187,195,199.}

The cases written in square brackets [5],[13],[25],[41],[61],[63],[85],[113],
[145],[181] arise when q is a prime power, however the Delsarte-Goethals-
Seidel-Turyn construction means the required circulant matrices also exist
for these prime powers.
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(a) P12 (q = 5;n = 3) (b) P28 (q = 13;n = 7)

Figure 1: Propus-Hadamard matrices for orders 4q

2.1.1 Propus matrices of small order and from q prime power

There are two trivial propus-Hadamard matrices of orders 12 and 20 based
on A = J , B = C = D = J − 2I, for n = 3, and A = Q + I, B = C = J − 2I,
D = Q − I (Q constructed using Legendre symbols) for n=5.

2.2 Propus-Hadamard matrices from D-optimal designs

Lemma 2. Let n ≡ 3 (mod 4), be a prime, such that D-optimal designs,
constructed using two circulant matrices, one of which is symmetric, exist
for order 2n. Then propus-Hadamard matrices exist for order 4n.

Djoković and Kotsireas in [22, 8] give D-optimal designs, constructed
using two circulant matrices, for n ∈ {3,5,7,9,13,15,19,21,23,25,27,31,33,
37,41,43,45,49,51,55,57,59,61,63,69,73,75,77,79,85,87,91,93,97,103,
113,121,131,133,145,157,181,183}, n < 200. We are interested in those
cases where the D-optimal design is constructed from two circulant matrices
one of which must be symmetric.

Suppose D-optimal designs for orders n ≡ 3 (mod 4), a prime, are con-
structed using two circulant matrices, X and Y . Suppose X is symmetric.
Let Q + I be the Paley matrix of order n. Then choosing

A =X, B = C = Q + I, D = Y,

to put in the array GP gives the required propus-Hadamard matrices.
Hence we have propus-Hadamard matrices, constructed using D-optimal

designs, for orders 4n where n is in

{3,7,19,31}.

The results for n = 19 and 31 were given to us by Dragomir Djokovic̀.
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(a) D38 (n = 19) (b) GP76 (n = 19)

Figure 2: D-optimal designs for orders 2n propus-Hadamard matrices for orders
4n

2.3 A Variation of a Theorem of Miyamoto

In Seberry and Yamada [29] one of Miyamoto’s results [25] was reformulated
so that symmetric Williamson-type matrices can be obtained. The results
given here are due to Miyamoto, Seberry and Yamada.

Lemma 3 (Propus Variation). Let Ui, Vj, i, j = 1,2,3,4 be (0,+1,−1)
matrices of order n which satisfy

(i) Ui, Uj, i ≠ j are pairwise amicable,

(ii) Vi, Vj, i ≠ j are pairwise amicable,

(iii) Ui ± Vi, (+1,−1) matrices, i = 1,2,3,4,

(iv) the row sum of U1 is 1, and the row sum of Uj, i = 2,3,4 is zero,

(v) ∑4
i=1UiU

T
i = (2n + 1)I − 2J , ∑4

i=1 ViV
T
i = (2n + 1)I.

Let S1, S2, S3, S4 be four (+1,−1)-matrices of order 2n defined by

Sj = Uj × [ 1 1
1 1

] + Vj × [ 1 −1
−1 1

] ,

where S2 = S3.
Then there are 4 propus-Williamson type matrices of order 2n + 1. If

Ui and Vi are symmetric, i = 1,2,3,4 then the Williamson-type matrices are
symmetric. Hence there is a symmetric propus-type Hadamard matrix of
order 4(2n + 1).

Proof. With S1, S2, S3, S4, as in the theorem enunciation the row sum of
S1 = 2 and of Si = 0, i = 2,3,4. Now define

X1 = [ 1 −e2n
−eT2n S1

] and Xi = [ 1 e2n
eT2n Si

] , i = 2,3,4.
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First note that since Ui, Uj , i ≠ j and Vi, Vj , i ≠ j are pairwise amicable,

SiS
T
j = (Ui × [ 1 1

1 1
] + Vi × [ 1 −1

−1 1
])(UT

j ×[ 1 1
1 1

] + V T
j ×[ 1 −1

−1 1
])

= UiU
T
j × [ 2 2

2 2
] + ViV T

j × [ 2 −2
−2 2

]

= SjST
i .

(Note this relationship is valid if and only if conditions (i) and (ii) of the
theorem are valid.)

4

∑
i=1

SiS
T
i =

4

∑
i=1

UiU
T
i × [ 2 2

2 2
] +

4

∑
i=1

ViV
T
i × [ 2 −2

−2 2
]

= 2 [ 2(2n + 1)I − 2J −2J
−2J 2(2n + 1)I − 2J

]

= 4(2n + 1)I2n − 4J2n

Next we observe

X1X
T
i = [ 1 − 2n e2n

eT2n −J + S1ST
i

] =XiX
T
1 i = 2,3,4,

and

XiX
T
j = [ 1 + 2n e2n

eT2n J + SiST
j

] =XjX
T
i i ≠ j, i, j = 2,3,4.

Further

4

∑
i=1

XiX
T
i = [ 1 + 2n −3e2n

−3eT2n J + S1ST
1

] +
4

∑
i=2

[ 1 + 2n e2n
eT2n J + SiST

i
]

= [ 4(2n + 1) 0
0 4J + 4(2n + 1)I − 4J

] .

Thus we have shown that X1, X2, X3, X4 are pairwise amicable, sym-
metric Williamson type matrices of order 2n + 1, where X2 = X3. These
can be used as in (ii) of Theorem using the additive property to obtain the
required symmetric propus Hadamard matrix of order (4(2n + 1).

Many powerful corollaries arose and new results were obtained by making
suitable choices in the theorem. We choose X1, X2, X3, X4 to ensure that
the propus construction can be used to form symmetric Hadamard matrices
of order 4(2n + 1).
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From Paley’s theorem (Corollary 1) for p ≡ 3 (mod 4) we use the backcir-
culant or type 1, symmetric matrices QR and R instead of Q and I; whereas
for p ≡ 1 (mod 4) we use the symmetric Paley core Q. If p is a prime power
≡ 3 (mod 4) we set U1 = I, U2 = U3 = QR, U4 = 0 of order p, and if p is a
prime power ≡ 1 (mod 4), we set U1 = I, U2 = U3 = Q, U4 = 0 of order p.
Hence ∑4

k=1UkU
⊺

k = (q + 2)I − 2J .
From Turyn’s result (Corollary 2) we set, for p ≡ 1 (mod 4) V1 = P ,

V2 = V3 = I and V4 = S, and for p ≡ 3 (mod 4), V1 = P , V2 = V3 = R and
V4 = S, so ∑4

k=1 VkV
⊺

k = (q + 2)I.
Hence we have:

Corollary 1. Let q ≡ 1 (mod 4) be a prime power and 1
2(q + 1) be a prime

power or the order of the core of a symmetric conference matrix (this happens
for q = 89). Then there exist symmetric Williamson type matrices of order
2q + 1 and a symmetric propus-type Hadamard matrix of order 4(2q + 1).

Using q = 5 and q = 41 gives the previously unresolved cases for 11 and
83.

2.3.1 Three Equal

The two starting Hadamard matrices of orders 12 and 28 based on the skew
Paley core B = C = D = Q + I (constructed using Legendre symbols) are
unique and finite because 12 = 32 + 12 + 12 + 12 and 28 = 52 + 12 + 12 + 12 and
these are the only orders for which a symmetric circulant A can exist with
B = C =D.

3 Propus-Hadamard matrices from conference
matrices: even order matrices

A powerful method to construct propus-Hadamard matrices for n even is
using conference matrices.

Lemma 4. Suppose M is a conference matrix of order n ≡ 2 (mod 4). Then
MM⊺ =M⊺M = (n− 1)I, where I is the identity matrix and M⊺ =M . Then
using A =M +I, B = C =M −I, D =M +I gives a propus-Hadamard matrix
of order 4n.

We use the conference matrix orders from [1] and so have propus-
Hadamard matrices of orders 4n where n ∈

{6,10,14,18,26,30,38,42,46,50,54,62,74,82,90,98}.

Conference matrices can be constructed using made two circulant matrices
A and B of order n where both A and B are symmetric.
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Then using the matrices A + I, B = C and D = A − I in P gives the
required construction.

The conference matrices can also be made from two circulant matrices
A and B of order n where both A and B are symmetric. However here we
use A + I, BR = CR and D = A − I in P to obtain the required construction.
There is another variant of this family which uses the symmetric Paley cores
A = Q+ I, D = Q− I (constructed using Legendre symbols) and one circulant
matrix of maximal determinant B = C = Y .

4 Conclusion and Future Work

Using the results of Lemma 1 and Corollary 1 and the symmetric propus-
Hadamard matrices of Di Matteo, Djoković, and Kotsireas given in [4], we
see that the unresolved cases for symmetric propus-Hadamard matrices for
orders 4n, n < 200 odd, are where n ∈

{17,23,29,33,35,39,47,53,65,71,73,77,93,95,97,99,

101,103,107,109,113,125,131,133,137,143,149,151,153,155,

161,163,165,167,171,173,179,183,185,189,191,193,197.}

There are many constructions and variations of the propus theme to be
explored in future research. Visualizing the propus construction gives aes-
thetically pleasing examples of propus-Hadamard matrices. The visualization
also makes the construction method clearer. There is the possibility that
these visualizations may be used for quilting.
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